Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
分数階微分積分学(ぶんすうかいびぶんせきぶんがく、英: fractional calculus)は解析学(特に微分積分学)の一分野で、微分作用素 D および積分作用素 J が実数冪あるいは複素数冪をとる可能性について研究する学問である。 この文脈における「冪」の語は作用素の合成を繰り返し行うという意味で用いており、それに従えばたとえば
多変数(基礎)解析学または多変数微分積分学(英: multivariable calculus, multivariate calculus)とは、1変数の微分積分学を多変数へ拡張したもの、すなわち多変数関数における微分法および積分法を扱う解析学の一分野である。 多変数
〔integral〕 (名)
(1)〔differentiation〕
数学において積分微分方程式(せきぶんびぶんほうていしき、英: integro-differential equation)とは、ある函数の積分と微分のいずれも含むような方程式のことを言う。 一般的な一階線型の積分微分方程式は、次のような形状を持つ。 d d x u ( x ) + ∫ x 0 x f
部分積分(ぶぶんせきぶん、英: Integration by parts)とは、微分積分学・解析学における関数の積の積分に関する定理であり、積の積分をより計算が容易な積分に変形するために頻繁に使われる手法である。 具体的には、2つの微分可能な関数 u ( x ) {\textstyle u(x)}
数学における時間尺度微分積分学(じかんしゃくどびぶんせきぶんがく、英: time-scale calculus)は、微分積分学と和分差分学とを統一するもので、微分方程式の理論と差分方程式の理論とを統合した(連続と離散の入り混じった)力学系の研究の方法論を提供する。時間尺
体積積分(たいせきせきぶん、英: volume integral)とは、数学、特に多変数解析における用語で、3次元領域上の積分を指す。すなわち、多重積分の特殊な例である。積分の記号として∰が用いられる。 体積積分は特に物理学において多くの応用がなされており、例えば流束密度を求めることに利用される。 体積積分は直交座標系における関数