语言
没有数据
通知
无通知
语音翻译
ルーローの三角形(ルーローのさんかっけい、英: Reuleaux triangle)は、正三角形の各辺を膨らませたような形をした定幅図形である。ドイツの工学者フランツ・ルーローが考察したことからこの名がついた。 正三角形の各頂点を中心に半径がその正三角形の1辺となる円弧で結んでできる。曲線
〔「たかっけい」とも〕
⇒ たかくけい(多角形)
各頂点において見込む角は、(その頂点および隣接する二つの頂点を除く)ほかの全ての頂点をその内部に含む。 任意の非退化三角形は狭義凸多角形である。 凸(超)多面体(英語版)(凸多胞体) 円内接多角形(共円多角形) 円外接多角形 ^ Definition and properties of convex polygons with
多角形では起こり得ないことである。 任意の単純多角形の場合と同じく、辺の数が n の凹多角形の内角の和は π(n − 2) ラジアン、度数法では ((n − 2)⋅180)° である。 凹多角形を凸多角形からなる集合に分割することは常に可能である。可能な限り少ない数の凸多角形への分割を求める線形時間アルゴリズムが
正多角形(せいたかっけい、せいたかくけい、英: regular polygon)とは、全ての辺の長さが等しく、全ての内角の大きさが等しい多角形である。なお、この記事では断りのない限り n は3以上の自然数とする。 正多角形は線対称であり、正n角形の対称軸は n本である。また、正偶数角形は点対称でもある。
各点について、隣り合う点が掃引線の同じ側にあるか、つまり「水平線や鉛直線を引いた場合に同じ側にあるかどうか」を確認する。もし同じ側にあれば掃引線を延長し、多角形と交差した点の辺の端点の内「違う側」の点間の線分で分割する。この処理を繰り返す。 (水平な)掃引線を下へと動かす場合に、両方の頂点が掃引
、いくつかの国際的な審議会や委員会を務め、特許制度の設立に相当程度関わった。 ルーローの考えでは、機械というものは、運動学的連鎖において隣接する部品によって動きを制約された要素の連鎖として抽象化できる。メカニズムの種類は非常に多様だが、彼はその位相を記述するために簡潔な記法を開発し、いかにこの記法
报告
添加单词到笔记本
您尚未创建任何笔记本
创建一个新笔记本
需要登录
显示通知