语言
没有数据
通知
无通知
语音翻译
数学の線型代数学における余因子展開(よいんしてんかい、英: cofactor expansion)、あるいはピエール・シモン・ラプラスの名に因んでラプラス展開とは、n次正方行列 A の行列式 |A| の、n 個の A の (n − 1)次小行列式の重み付き和としての表示である。余因子展開
n)行列を直交行列(またはユニタリ行列)U,Vと対角行列Dに分解 A = UDV* 正方行列 零行列 対角行列 三角行列 ハンケル行列 テプリッツ行列 転置行列 随伴行列 対称行列 エルミート行列 正規行列 - ユニタリ対角化可能な行列のクラス 単位元 - 単位行列 逆元 - 正則行列 - 逆行列 直交行列
(1)物事を成り立たせる要素。 ファクター。
(1)嫡子以外の子。
『全訳 列子』田中佩刀訳著、明徳出版社、2018年(平成30年)9月。ISBN 4-89619-859-X。 杞憂 朝三暮四 愚公山を移す 疑心暗鬼を生ず(本文ではなく、説符の注から) 中国語版ウィキソースに本記事に関連した原文があります。 列子 老子-老子道徳経 荘子-荘子
{U}}(-\infty ,\infty )} が散乱演算子である。この散乱演算子を行列表示したものがS行列である。 散乱過程を始状態から終状態への転移としてとらえる散乱理論では、その転移確率を時間依存シュレディンガー方程式を用いて求める(時間発展についてはシュレディンガー描像から相互作用描像に書き換えてから計算するこ
線型代数学における部分行列(ぶぶんぎょうれつ、英: submatrix)または小行列(しょうぎょうれつ、独: Teilmatrix)は、与えられた行列に対してその行または列を取り除くことで作られる行列を言う。特に正方行列に対して同じ番号の行と列を取り除くことで得られる小行列は主小行列 (principal
数学において、行列群 (matrix group) は(通常は前もって固定される)ある体 K上の n 次可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n 次可逆行列を考えることができる。(行列のサイズは有限に制限されていることに注意。なぜならば任意の群は任意の体上の無限行列
报告
添加单词到笔记本
您尚未创建任何笔记本
创建一个新笔记本
需要登录
显示通知