语言
没有数据
通知
无通知
语音翻译
ウィキブックスに位相空間論関連の解説書・教科書があります。 位相空間論(いそうくうかんろん)、もしくは一般位相空間論(いっぱんいそうくうかんろん英: general topology、point-set topology)とは、位相空間の性質やその上に定義される構造を研究対象とする数学の分野である。 一般位相空間
(Sc)i のことである。これを記号 Se で表す。また集合 S の閉包 Sa の補集合 (Sa)c と定義してもよい。 外部 Se に属する点を集合 S の外点(がいてん、英: exterior point)と呼ぶ。 外部作用素は以下の性質(公理)を満たし、集合に位相を与える方法として採用することもできる。
本節では、そうしたプラスアルファの性質のうち代表的なものを紹介する。 分離公理とは、位相空間 X 上の2つの対象(点や閉集合)を開集合により「分離」(separate)する事を示す一連の公理、もしくはそこから派生した公理である。 代表的な分離公理としてハウスドルフの分離公理があり、これは以下のような公理であり、前述のようにこれは有向点族の収束の一意性と同値である。
数学において、位相空間の部分集合の閉包(へいほう、英: closure)は、その部分集合の触点(部分集合の点とそれらの集積点)を全て集めて得られる集合である。直観的には、部分集合の触点とはその部分集合の「いくらでも近く」にある点と考えられる。閉包の概念は様々な意味で開核の概念の双対になっている。 ユークリッド空間の部分集合
の境界に属する点のことを、S の境界点(boundary point) と呼ぶ。S が境界を持たない (boundaryless) とは、S が自身の境界を包含しないこと、あるいは同じことだが境界点がひとつも S に属さないことをいう。集合 S の境界を表すのに、bd(S), fr(S)
数学の位相空間論周辺分野でいう近傍(きんぼう、英: neighborhood)は位相空間の基本概念の一つで、直観的に言えば与えられた点を含む集合で、その点を少しくらい動かしてもその集合から外に出ないようなものをいう。 近傍の概念は開集合と内部の概念と密接な関連がある。 位相空間 X と X の点 p
位相空間論および関連した数学の分野において、位相空間の族の非交和(ひこうわ、英: disjoint union)または直和(ちょくわ、英: direct sum)とは、台集合の非交和(集合の直和)に非交和位相 (disjoint union topology)
開基の元は、全体空間 X を被覆する。 B1, B2 が開基の元で、それらの交わりを I とすると、I の各点 x に対し、開基の元 B3 で x を含み I に含まれるものが取れる。 X の部分集合族 B が上記の条件のうちの何れかでも満たさないならば、B は X 上のどのような位相の開基にもならない(しかし、X
报告
添加单词到笔记本
您尚未创建任何笔记本
创建一个新笔记本
需要登录
显示通知