语言
没有数据
通知
无通知
语音翻译
を満たす。さらに、バーチ・スウィンナートン=ダイアー予想が正しければ、合同数はそのような数に限る。 与えられた n に対して、上記の条件を満たすか否か判定するのは易しい。したがって、バーチ・スウィンナートン=ダイアー予想が肯定的に解決されれば、合同数問題も自動的に解けたとみなせる。 さて、n を 8
自然数を, 引き算が自由にできるように拡張したもの。 自然数と 0 , および自然数にマイナスをつけた負数の全体。
(1)〔consistence〕
}N_{m}u^{m-1}} が定義に採用されることもある。 言い換えると、合同ゼータ関数 Z(V, u) とは、有限体 F 上で V を定義する方程式の F の k 次拡大体 Fk における解の数の生成母関数が、Z(V, u) の対数微分となるような関数とも定義できる。 有限体 F = Fq が与えられたとき、自然数
BigNum あるいは整数であることを示す BigInt、日本語では多倍長などといった名前で呼ばれている。任意精度演算の記事も参照のこと。 正負両方の整数を表せる符号付き整数型と、非負(0または正)の整数だけを表せる符号無し整数型とがある。固定長では、符号付き整数型
は分岐する」という。 次に、3n + 2 の形の有理素数 p は Z[ω] でも素数であることが分かる。この状況を「p は惰性する」という。実際、p = 3n + 2 が2つの(単数でない)アイゼンシュタイン整数の積 αβ に等しいとすると、ノルムを取って N(α)N(β)
ガウス整数(ガウスせいすう、英語: Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、a + bi(a, b は整数)の形の数のことである。ここで i は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス
半整数(はんせいすう、英: half-integer)とは有理数で、n を整数としたとき n + 1/2 の形で表される数のことである。十進法の小数で表すと、小数点以下一桁の有限小数で小数第一位が 5 である。 例としては 3.5 {\displaystyle 3.5} 、 − 9 2 {\displaystyle
报告
添加单词到笔记本
您尚未创建任何笔记本
创建一个新笔记本
需要登录
显示通知