语言
没有数据
通知
无通知
语音翻译
〔数〕
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
数学の分野における定数関数(ていすうかんすう、英: constant function; 定値写像)とは、それがとりうる値が変数の変動によって変わらない定数値の関数(写像)のことを言う。例えば、関数 f(x) = 4 はすべての値を 4 へと写すため、定数関数である。
準完全数は存在するかどうか未だに分かっていない。準完全数が存在するならば、それは奇数の平方数でなければならないことが知られている。 σ(n) = kn (k:整数) を満たす n を k-倍完全数という。例えば 120 は3倍完全数である。現在知られている倍積完全数は n = 1(このとき、k
18世紀末には、π(x) が x ln x {\displaystyle {\frac {x}{\operatorname {ln} x}}} に漸近近似できること、即ち lim x → ∞ π ( x ) x / ln x = 1 {\displaystyle \lim _{x\to \infty
により分類される。 Lu は単項関係あるいは性質を表す。 Luv あるいは uLv は二項関係を表す。 Luvw は三項関係(英語版)を表す。 Luvwx は四項関係を表す。 集合 X1, …, Xk は定義域と呼ばれる。すべての Xj が同じ集合 X のとき、L を X 上の k 項関係と呼ぶ。 Peirce
一般に(無限個の場合をも含む)任意個数の変数を扱う場合には、用意する記号の都合上、添字記法に従う方が支配的である。 ^ 野村龍太郎,下山秀久編『工學字彙』(工學恊會, 1886)https://dl.ndl.go.jp/info:ndljp/pid/1678148/79 アリティ 族 (数学) 媒介変数 自由変数と束縛変数 変数 (プログラミング)
报告
添加单词到笔记本
您尚未创建任何笔记本
创建一个新笔记本
需要登录
显示通知