语言
没有数据
通知
无通知
语音翻译
方程式を代数的に取り扱うという立場においては線型微分方程式は最も基本的な対象となる。 重要な数学的概念の導入・発展をもたらした関数方程式に、熱方程式や超幾何関数の微分方程式、可積分系に対するKdV方程式・KZ方程式が挙げられる。 微分方程式や差分方程式の解は、一般解と特異解とに分類されることがある。
ボルツマン方程式 (英: Boltzmann equation)は、運動論的方程式の一つの形で、粒子間の2体衝突の効果だけを出来るだけ精確に取り入れたボルツマンの衝突項を右辺にもつ方程式である。そしてそれは気体中の熱伝導、拡散などの輸送現象を論ずる気体分子運動論の基本となる方程式である。 時刻 t における速度分布関数
ラプラス方程式(ラプラスほうていしき、英: Laplace's equation)は、2階線型の楕円型偏微分方程式 ∇2φ = Δφ = 0 である。ここで、∇2 = Δ はラプラシアン(ラプラス作用素、ラプラスの演算子)である。なお、∇ についてはナブラを参照。ラプラ
パラメトリック方程式(パラメトリックほうていしき、英: parametric equation)とは、関数を媒介変数(パラメータ)を使って表したもの、またはその手法である。単純な運動学的例として、時間を媒介変数として位置、速度、その他の運動体に関する情報を表す場合が挙げられる。
{\displaystyle e} が小さいときに適用可能である。 もう1つの方法は、ベッセル関数による展開の方法である。この方法は e {\displaystyle e} が大きい場合でも適用可能である。 ケプラーの方程式は、以下の並進で不変であるという特徴を持っている 。 ( M , E ) → (
フィッシャー方程式(フィッシャーほうていしき、英: Fisher equation)とは、アメリカ合衆国の経済学者アーヴィング・フィッシャーが提唱した、名目金利、実質金利、インフレ率(物価上昇率)の間の関係式で、名目金利 = 実質金利 + インフレ率 と表される。金利とインフレ率の期間は合わせる必要
一般相対性理論 > アインシュタイン方程式 一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、英: Einstein's equations, Einstein Field Equations)は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。
フリードマン方程式(フリードマンほうていしき、Friedmann equations)は、一般相対性理論のアインシュタイン方程式の厳密解の一つであるフリードマン・ルメートル・ロバートソン・ウォーカー計量(FLRW計量)から得られる時空の運動方程式である。標準ビッグバン宇宙モデルでの宇宙膨張を表す方程式
报告
添加单词到笔记本
您尚未创建任何笔记本
创建一个新笔记本
需要登录
显示通知